Solving Sequences of Generalized Least-Squares Problems on Multi-threaded Architectures

نویسندگان

  • Diego Fabregat-Traver
  • Yurii S. Aulchenko
  • Paolo Bientinesi
چکیده

Generalized linear mixed-effects models in the context of genome-wide association studies (GWAS) represent a formidable computational challenge: the solution of millions of correlated generalized least-squares problems, and the processing of terabytes of data. We present high performance incore and out-of-core shared-memory algorithms for GWAS: By taking advantage of domain-specific knowledge, exploiting multi-core parallelism, and handling data efficiently, our algorithms attain unequalled performance. When compared to GenABEL, one of the most widely used libraries for GWAS, on a 12-core processor we obtain 50-fold speedups. As a consequence, our routines enable genome studies of unprecedented size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Numerical methods for generalized least squares problems

Usually generalized least squares problems are solved by transforming them into regular least squares problems which can then be solved by well-known numerical methods. However, this approach is not very effective in some cases and, besides, is very expensive for large scale problems. In 1979, Paige suggested another approach which consists of solving an equivalent equality-constrained least sq...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

Cellular Neural Networks and Least Squares for partial differential problems parallel solving

This paper shows how Cellular Neural Networks (CNN) can be harnessed into solving partial differential problems through an adaptation of the Least Squares Finite Elements Method. As CNNs can be implemented on distributed parallel architectures, this method allows the distribution of a resource demanding differential problem over a computer network.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 234  شماره 

صفحات  -

تاریخ انتشار 2014